The Green Infrastructure Land Network

A Reference for S mart Growth Land Use Decisions

The Green Infrastructure Land Network

- An opportunity to protect and link Maryland's remaining ecologically valuable lands
- A conservation guide not a plan or mandate

Purpose of the Green Infrastructure Land Network

- 1) Systematically identify and protect ecologically important lands
- 2) Address problems of forest fragmentation, habitat degradation and water quality
- 3) Maximize the influence and effectiveness of public and private conservation investments
- 4) Promote shared responsibilities for land conservation between public and private sectors
- 5) Guide and encourage compatible uses and land management practices

Greenways

Natural areas with some form of permanent protection Basic framework existing stream valley parks

E cological Corridors

Green Infrastructure

(Identified through Green Infrastructure Assessment)

Recreational Corridors

- Land-based trails
- Water trails

(Identified through state and local trail plans)

Location of the Green Infrastructure

Protection of the Green Infrastructure Land Network

Relies on cooperative efforts of many people and organizations

- government agencies
- land trusts
- interested land owners

The Green Infrastructure Land Network Indudes:

- large tracts of forest land
- important wildlife habitat
- wetlands
- riparian corridors
- existing park and conservation
 lands

Components of the Network

Hubs: large contiguous blocks of natural resource lands

Corridors: best ecological route between hubs

Green Infrastructure Land Network

Green Infrastructure vs. Local Natural Resource Conservation and Restoration

- Broad or Regional Scale Green Infrastructure Elements
 - large blocks of forest
 - large wetland complexes
 - large, unique habitats
 - major lands cape corridors

- Protection Elements Outside of Hubs and Corridors
 - many streams and their buffers
 - smaller / is olated wetlands
 - small and/or is olated sensitive plant and animal species and/or habitats
 - steep slopes, flood plains, other sensitive areas

Integrating Regional and Local Natural Resource Protection

Green Infrastructure Elements

Cross-Watershed Linkages

Major Riparian Link-ages.
Among Hubs

Large, Intact Forest Habitat Blocks

> Large Wetland Complexes

<u>Complementary</u> <u>Elements</u>

Small or Isolated Natural Heritage Elements

Streams and their Buffers

Steep Stopes,
Floodplains, and
Other Locally Sensitive
Features

Small, Isolated
Wetlands

Green Infrastructure Components

Identification Phase Steps 1-3

Favor:

- Forests
- Wetlands
- S ensitive S pecies
- Protected Lands
- Streams and Waterways
- Healthy Aquatic S ys tems

Avoid:

- Roads
- Developed Areas
- Degraded Aquatic S ys tems

Analysis Phase Steps 4-5

Ecological Factors:

- Interior Forest
- Unmodified & Special Wetlands
- S ensitive S peaies & other Heritage Elements
- Minimally Disturbed Headwaters
- Adjacent Land Cover
- "Remoteness" & "Intactness"
- Slope

Vulnerability Factors

- Degrees of Protection
- Development Pressure
- Zoning for Development

Step 1: Selection of Ecological Components

- Incorporate lands cape
 ecology principles
- Coarse scale analysis
- S trive to include full range of ecos ys tem elements
- Limited to features with GIS data available statewide

Composite Map of Important Ecological Features

Step 2: Identification of Hubs

- Large, contiguous blocks of natural resource lands
- Forests, wetlands, and other important habitats
- Hubs range in size from 500 acres and up

Step 3: Identification of Corridors

- Assess landscape between hubs for linkage potential
- Indudes riparian, upland, and "mixed" connections
- Width based on 1100' or FEMA flood plain, whichever is greater

Corridor

Delineation

Process

(1) Identify Hubs to Link

Corridor Delinection Process

(2) Assess
Landscape
between hubs for
favorable features
(eg. forests, wetlands,
streams, aquatic
areas of high
integrity)

Corridor Delineation Process

(3) Assess Landscape between hubs for favorable features (eg. developed areas, roads, degraded aquatic areas, manipulated landscapes)

Corridor Delinection Process

(4) Given the information assembled in steps 1-3, delineate potential corridors connecting hubs

Step 4: Regional Evaluation of Hubs and Corridors

- Individual hubs or corridors are analysis units
- Data base of hub characteristics
- Indudes information on ecological significance,
 vulnerability, and degree of protection
- Ranking based on single or multiple criteria for each physiographic region
- Comparing hubs or corridors for conservation value, feasibility and urgency of action

Step 5: Local Evaluation of Hubs and Corridors

- Evaluating lands cape within hubs & corridors
- Accounts for local variation in ecological significance or vulnerability
- Identifying conduits and barriers to movement
- Identification of local conservation and restoration opportunities

Hub and Corridor Identification

Summary: Status and Next Steps

Jan. 1998

County model and pilot completed

May 1999

Statewide methodology drafted and peer-reviewed

June 1999

Draft Green Infrastructure maps

pre cored

July-Nov. 1999

County reviews of draft maps

Dec. 1999

Revision of maps

Early 2000

Publish revised maps

Fall 2000

Potential for mid-atlantic conference